3.3.98 \(\int (f+g x^3)^2 \log ^3(c (d+e x^2)^p) \, dx\) [298]

3.3.98.1 Optimal result
3.3.98.2 Mathematica [B] (verified)
3.3.98.3 Rubi [N/A]
3.3.98.4 Maple [N/A]
3.3.98.5 Fricas [N/A]
3.3.98.6 Sympy [N/A]
3.3.98.7 Maxima [F(-2)]
3.3.98.8 Giac [N/A]
3.3.98.9 Mupad [N/A]

3.3.98.1 Optimal result

Integrand size = 24, antiderivative size = 24 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=-48 f^2 p^3 x+\frac {351136 d^3 g^2 p^3 x}{25725 e^3}+\frac {6 d f g p^3 x^2}{e}-\frac {55456 d^2 g^2 p^3 x^3}{77175 e^2}+\frac {5232 d g^2 p^3 x^5}{42875 e}-\frac {48 g^2 p^3 x^7}{2401}-\frac {3 f g p^3 \left (d+e x^2\right )^2}{8 e^2}+\frac {48 \sqrt {d} f^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e}}-\frac {351136 d^{7/2} g^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{25725 e^{7/2}}-\frac {24 i \sqrt {d} f^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{\sqrt {e}}+\frac {1408 i d^{7/2} g^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{245 e^{7/2}}-\frac {48 \sqrt {d} f^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}+i \sqrt {e} x}\right )}{\sqrt {e}}+\frac {2816 d^{7/2} g^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}+i \sqrt {e} x}\right )}{245 e^{7/2}}+24 f^2 p^2 x \log \left (c \left (d+e x^2\right )^p\right )-\frac {1408 d^3 g^2 p^2 x \log \left (c \left (d+e x^2\right )^p\right )}{245 e^3}+\frac {568 d^2 g^2 p^2 x^3 \log \left (c \left (d+e x^2\right )^p\right )}{735 e^2}-\frac {288 d g^2 p^2 x^5 \log \left (c \left (d+e x^2\right )^p\right )}{1225 e}+\frac {24}{343} g^2 p^2 x^7 \log \left (c \left (d+e x^2\right )^p\right )-\frac {6 d f g p^2 \left (d+e x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{e^2}+\frac {3 f g p^2 \left (d+e x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{4 e^2}-\frac {24 \sqrt {d} f^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (c \left (d+e x^2\right )^p\right )}{\sqrt {e}}+\frac {1408 d^{7/2} g^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (c \left (d+e x^2\right )^p\right )}{245 e^{7/2}}-6 f^2 p x \log ^2\left (c \left (d+e x^2\right )^p\right )+\frac {6 d^3 g^2 p x \log ^2\left (c \left (d+e x^2\right )^p\right )}{7 e^3}-\frac {2 d^2 g^2 p x^3 \log ^2\left (c \left (d+e x^2\right )^p\right )}{7 e^2}+\frac {6 d g^2 p x^5 \log ^2\left (c \left (d+e x^2\right )^p\right )}{35 e}-\frac {6}{49} g^2 p x^7 \log ^2\left (c \left (d+e x^2\right )^p\right )+\frac {3 d f g p \left (d+e x^2\right ) \log ^2\left (c \left (d+e x^2\right )^p\right )}{e^2}-\frac {3 f g p \left (d+e x^2\right )^2 \log ^2\left (c \left (d+e x^2\right )^p\right )}{4 e^2}+f^2 x \log ^3\left (c \left (d+e x^2\right )^p\right )+\frac {1}{7} g^2 x^7 \log ^3\left (c \left (d+e x^2\right )^p\right )-\frac {d f g \left (d+e x^2\right ) \log ^3\left (c \left (d+e x^2\right )^p\right )}{e^2}+\frac {f g \left (d+e x^2\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right )}{2 e^2}-\frac {24 i \sqrt {d} f^2 p^3 \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{\sqrt {d}+i \sqrt {e} x}\right )}{\sqrt {e}}+\frac {1408 i d^{7/2} g^2 p^3 \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{\sqrt {d}+i \sqrt {e} x}\right )}{245 e^{7/2}}+6 d f^2 p \text {Int}\left (\frac {\log ^2\left (c \left (d+e x^2\right )^p\right )}{d+e x^2},x\right )-\frac {6 d^4 g^2 p \text {Int}\left (\frac {\log ^2\left (c \left (d+e x^2\right )^p\right )}{d+e x^2},x\right )}{7 e^3} \]

output
24*f^2*p^2*x*ln(c*(e*x^2+d)^p)+24/343*g^2*p^2*x^7*ln(c*(e*x^2+d)^p)-6*f^2* 
p*x*ln(c*(e*x^2+d)^p)^2-6/49*g^2*p*x^7*ln(c*(e*x^2+d)^p)^2+6*d*f^2*p*Unint 
egrable(ln(c*(e*x^2+d)^p)^2/(e*x^2+d),x)-48*f^2*p^3*x-48/2401*g^2*p^3*x^7+ 
1/7*g^2*x^7*ln(c*(e*x^2+d)^p)^3-351136/25725*d^(7/2)*g^2*p^3*arctan(x*e^(1 
/2)/d^(1/2))/e^(7/2)+1/2*f*g*(e*x^2+d)^2*ln(c*(e*x^2+d)^p)^3/e^2+48*f^2*p^ 
3*arctan(x*e^(1/2)/d^(1/2))*d^(1/2)/e^(1/2)-6/7*d^4*g^2*p*Unintegrable(ln( 
c*(e*x^2+d)^p)^2/(e*x^2+d),x)/e^3+351136/25725*d^3*g^2*p^3*x/e^3-55456/771 
75*d^2*g^2*p^3*x^3/e^2+5232/42875*d*g^2*p^3*x^5/e-3/8*f*g*p^3*(e*x^2+d)^2/ 
e^2+6*d*f*g*p^3*x^2/e-1408/245*d^3*g^2*p^2*x*ln(c*(e*x^2+d)^p)/e^3+568/735 
*d^2*g^2*p^2*x^3*ln(c*(e*x^2+d)^p)/e^2-288/1225*d*g^2*p^2*x^5*ln(c*(e*x^2+ 
d)^p)/e+3/4*f*g*p^2*(e*x^2+d)^2*ln(c*(e*x^2+d)^p)/e^2+1408/245*d^(7/2)*g^2 
*p^2*arctan(x*e^(1/2)/d^(1/2))*ln(c*(e*x^2+d)^p)/e^(7/2)+6/7*d^3*g^2*p*x*l 
n(c*(e*x^2+d)^p)^2/e^3-2/7*d^2*g^2*p*x^3*ln(c*(e*x^2+d)^p)^2/e^2+6/35*d*g^ 
2*p*x^5*ln(c*(e*x^2+d)^p)^2/e-3/4*f*g*p*(e*x^2+d)^2*ln(c*(e*x^2+d)^p)^2/e^ 
2+2816/245*d^(7/2)*g^2*p^3*arctan(x*e^(1/2)/d^(1/2))*ln(2*d^(1/2)/(d^(1/2) 
+I*x*e^(1/2)))/e^(7/2)-24*f^2*p^2*arctan(x*e^(1/2)/d^(1/2))*ln(c*(e*x^2+d) 
^p)*d^(1/2)/e^(1/2)-48*f^2*p^3*arctan(x*e^(1/2)/d^(1/2))*ln(2*d^(1/2)/(d^( 
1/2)+I*x*e^(1/2)))*d^(1/2)/e^(1/2)-24*I*f^2*p^3*arctan(x*e^(1/2)/d^(1/2))^ 
2*d^(1/2)/e^(1/2)-24*I*f^2*p^3*polylog(2,1-2*d^(1/2)/(d^(1/2)+I*x*e^(1/2)) 
)*d^(1/2)/e^(1/2)-d*f*g*(e*x^2+d)*ln(c*(e*x^2+d)^p)^3/e^2+f^2*x*ln(c*(e...
 
3.3.98.2 Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(2385\) vs. \(2(1126)=2252\).

Time = 8.70 (sec) , antiderivative size = 2385, normalized size of antiderivative = 99.38 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\text {Result too large to show} \]

input
Integrate[(f + g*x^3)^2*Log[c*(d + e*x^2)^p]^3,x]
 
output
(f*g*p^3*(d + e*x^2)*(-8*d*(-6 + 6*Log[d + e*x^2] - 3*Log[d + e*x^2]^2 + L 
og[d + e*x^2]^3) + (d + e*x^2)*(-3 + 6*Log[d + e*x^2] - 6*Log[d + e*x^2]^2 
 + 4*Log[d + e*x^2]^3)))/(8*e^2) + 6*f*g*p^2*((x^4*Log[d + e*x^2]^2)/4 - e 
*((3*d*x^2)/(4*e^2) - x^4/(8*e) - (3*d^2*Log[d + e*x^2])/(4*e^3) - (d*x^2* 
Log[d + e*x^2])/(2*e^2) + (x^4*Log[d + e*x^2])/(4*e) + (d^2*Log[d + e*x^2] 
^2)/(4*e^3)))*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p]) + (3*d*f*g*p*x^ 
2*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/(2*e) - (2*d^2*g^2*p*x^3 
*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/(7*e^2) + (6*d*g^2*p*x^5* 
(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/(35*e) - (3*d^2*f*g*p*Log[ 
d + e*x^2]*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/(2*e^2) + (3*p* 
x*(14*f^2 + 7*f*g*x^3 + 2*g^2*x^6)*Log[d + e*x^2]*(-(p*Log[d + e*x^2]) + L 
og[c*(d + e*x^2)^p])^2)/14 + (f*g*x^4*(-(p*Log[d + e*x^2]) + Log[c*(d + e* 
x^2)^p])^2*(-3*p + 2*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])))/4 + (g 
^2*x^7*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2*(-6*p + 7*(-(p*Log[d 
 + e*x^2]) + Log[c*(d + e*x^2)^p])))/49 + (x*(-(p*Log[d + e*x^2]) + Log[c* 
(d + e*x^2)^p])^2*(-42*e^3*f^2*p + 6*d^3*g^2*p + 7*e^3*f^2*(-(p*Log[d + e* 
x^2]) + Log[c*(d + e*x^2)^p])))/(7*e^3) - (6*ArcTan[(Sqrt[e]*x)/Sqrt[d]]*( 
-7*d*e^3*f^2*p*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2 + d^4*g^2*p* 
(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2))/(7*Sqrt[d]*e^(7/2)) + 3*f 
^2*p^2*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])*(x*Log[d + e*x^2]^2...
 
3.3.98.3 Rubi [N/A]

Not integrable

Time = 2.38 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {2921, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx\)

\(\Big \downarrow \) 2921

\(\displaystyle \int \left (f^2 \log ^3\left (c \left (d+e x^2\right )^p\right )+2 f g x^3 \log ^3\left (c \left (d+e x^2\right )^p\right )+g^2 x^6 \log ^3\left (c \left (d+e x^2\right )^p\right )\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {48 g^2 p^3 x^7}{2401}+\frac {1}{7} g^2 \log ^3\left (c \left (e x^2+d\right )^p\right ) x^7-\frac {6}{49} g^2 p \log ^2\left (c \left (e x^2+d\right )^p\right ) x^7+\frac {24}{343} g^2 p^2 \log \left (c \left (e x^2+d\right )^p\right ) x^7+\frac {5232 d g^2 p^3 x^5}{42875 e}+\frac {6 d g^2 p \log ^2\left (c \left (e x^2+d\right )^p\right ) x^5}{35 e}-\frac {288 d g^2 p^2 \log \left (c \left (e x^2+d\right )^p\right ) x^5}{1225 e}-\frac {55456 d^2 g^2 p^3 x^3}{77175 e^2}-\frac {2 d^2 g^2 p \log ^2\left (c \left (e x^2+d\right )^p\right ) x^3}{7 e^2}+\frac {568 d^2 g^2 p^2 \log \left (c \left (e x^2+d\right )^p\right ) x^3}{735 e^2}+\frac {6 d f g p^3 x^2}{e}-48 f^2 p^3 x+\frac {351136 d^3 g^2 p^3 x}{25725 e^3}+f^2 \log ^3\left (c \left (e x^2+d\right )^p\right ) x-6 f^2 p \log ^2\left (c \left (e x^2+d\right )^p\right ) x+\frac {6 d^3 g^2 p \log ^2\left (c \left (e x^2+d\right )^p\right ) x}{7 e^3}+24 f^2 p^2 \log \left (c \left (e x^2+d\right )^p\right ) x-\frac {1408 d^3 g^2 p^2 \log \left (c \left (e x^2+d\right )^p\right ) x}{245 e^3}+\frac {f g \left (e x^2+d\right )^2 \log ^3\left (c \left (e x^2+d\right )^p\right )}{2 e^2}-\frac {d f g \left (e x^2+d\right ) \log ^3\left (c \left (e x^2+d\right )^p\right )}{e^2}-\frac {3 f g p^3 \left (e x^2+d\right )^2}{8 e^2}-\frac {24 i \sqrt {d} f^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{\sqrt {e}}+\frac {1408 i d^{7/2} g^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{245 e^{7/2}}-\frac {3 f g p \left (e x^2+d\right )^2 \log ^2\left (c \left (e x^2+d\right )^p\right )}{4 e^2}+\frac {3 d f g p \left (e x^2+d\right ) \log ^2\left (c \left (e x^2+d\right )^p\right )}{e^2}+\frac {48 \sqrt {d} f^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e}}-\frac {351136 d^{7/2} g^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{25725 e^{7/2}}-\frac {48 \sqrt {d} f^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{\sqrt {e}}+\frac {2816 d^{7/2} g^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{245 e^{7/2}}+\frac {3 f g p^2 \left (e x^2+d\right )^2 \log \left (c \left (e x^2+d\right )^p\right )}{4 e^2}-\frac {6 d f g p^2 \left (e x^2+d\right ) \log \left (c \left (e x^2+d\right )^p\right )}{e^2}-\frac {24 \sqrt {d} f^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (c \left (e x^2+d\right )^p\right )}{\sqrt {e}}+\frac {1408 d^{7/2} g^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (c \left (e x^2+d\right )^p\right )}{245 e^{7/2}}-\frac {24 i \sqrt {d} f^2 p^3 \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{\sqrt {e}}+\frac {1408 i d^{7/2} g^2 p^3 \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{245 e^{7/2}}+6 d f^2 p \int \frac {\log ^2\left (c \left (e x^2+d\right )^p\right )}{e x^2+d}dx-\frac {6 d^4 g^2 p \int \frac {\log ^2\left (c \left (e x^2+d\right )^p\right )}{e x^2+d}dx}{7 e^3}\)

input
Int[(f + g*x^3)^2*Log[c*(d + e*x^2)^p]^3,x]
 
output
$Aborted
 

3.3.98.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2921
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((f_) + 
 (g_.)*(x_)^(s_))^(r_.), x_Symbol] :> With[{t = ExpandIntegrand[(a + b*Log[ 
c*(d + e*x^n)^p])^q, (f + g*x^s)^r, x]}, Int[t, x] /; SumQ[t]] /; FreeQ[{a, 
 b, c, d, e, f, g, n, p, q, r, s}, x] && IntegerQ[n] && IGtQ[q, 0] && Integ 
erQ[r] && IntegerQ[s] && (EqQ[q, 1] || (GtQ[r, 0] && GtQ[s, 1]) || (LtQ[s, 
0] && LtQ[r, 0]))
 
3.3.98.4 Maple [N/A]

Not integrable

Time = 0.19 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.00

\[\int \left (g \,x^{3}+f \right )^{2} {\ln \left (c \left (e \,x^{2}+d \right )^{p}\right )}^{3}d x\]

input
int((g*x^3+f)^2*ln(c*(e*x^2+d)^p)^3,x)
 
output
int((g*x^3+f)^2*ln(c*(e*x^2+d)^p)^3,x)
 
3.3.98.5 Fricas [N/A]

Not integrable

Time = 0.29 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.46 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\int { {\left (g x^{3} + f\right )}^{2} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )^{3} \,d x } \]

input
integrate((g*x^3+f)^2*log(c*(e*x^2+d)^p)^3,x, algorithm="fricas")
 
output
integral((g^2*x^6 + 2*f*g*x^3 + f^2)*log((e*x^2 + d)^p*c)^3, x)
 
3.3.98.6 Sympy [N/A]

Not integrable

Time = 32.81 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.92 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\int \left (f + g x^{3}\right )^{2} \log {\left (c \left (d + e x^{2}\right )^{p} \right )}^{3}\, dx \]

input
integrate((g*x**3+f)**2*ln(c*(e*x**2+d)**p)**3,x)
 
output
Integral((f + g*x**3)**2*log(c*(d + e*x**2)**p)**3, x)
 
3.3.98.7 Maxima [F(-2)]

Exception generated. \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\text {Exception raised: ValueError} \]

input
integrate((g*x^3+f)^2*log(c*(e*x^2+d)^p)^3,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.3.98.8 Giac [N/A]

Not integrable

Time = 0.40 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.08 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\int { {\left (g x^{3} + f\right )}^{2} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )^{3} \,d x } \]

input
integrate((g*x^3+f)^2*log(c*(e*x^2+d)^p)^3,x, algorithm="giac")
 
output
integrate((g*x^3 + f)^2*log((e*x^2 + d)^p*c)^3, x)
 
3.3.98.9 Mupad [N/A]

Not integrable

Time = 1.57 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.08 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\int {\ln \left (c\,{\left (e\,x^2+d\right )}^p\right )}^3\,{\left (g\,x^3+f\right )}^2 \,d x \]

input
int(log(c*(d + e*x^2)^p)^3*(f + g*x^3)^2,x)
 
output
int(log(c*(d + e*x^2)^p)^3*(f + g*x^3)^2, x)